

From Zero to the Appstore
Blueprints for an HTML5 -Game

A guide to creating and publishing games
with EaselJS, CocoonJS and Phonegap Build

Sample Chapters

Olaf J. Horstmann

© 2013 Olaf Horstmann. All Rights Reserved.

Please do not share or distribute without written permission.
For inquiries contact me through oh@indiegamr.com.

1 Setting up an EaselJS App

1.1 The Folder Structure

Okay letôs jump right in and create the app. The first step will be to go to the htdocs-folder of

XAMPP and create a new folder with the name of our app, I will name it jumpy , you can use the

same name or whatever comes to your mind. Now we will open a new document in our code-

editor and save it as index.html . Also we will create another folder in our project folder and

name it js. In this folder we will place the easeljs-0.6.0.min.js and create another file that we will

name app.js. Those are the basic files that we will need for now, letôs go ahead and start coding.

index.html

 1 <html >
 2 <head>
 3 <title >jumpy</ title >
 4 <style type ="text/css" >
 5 * {
 6 padding : 0px;
 7 border : 0px;
 8 margin : 0px;
 9 background - color : #000;
 10 }
 11 </ style >
 12 <script src ="js/easeljs - 0.6.0.min.js" ></ script >
 13 <script src ="js/app.js" ></ script >
 14 </ head>
 15 <body>
 16
 17 </ body>
 18 </ html >
This is pretty much all you will have to do in HTML throughout the course of this book and the

good part is that all you need to know and worry about are the <script> tags:

lines 5 Ƶ 9

This will remove all the spacings between any element, because all we want to see on the page is

the canvas(our game). Also this will make the background black, we will change that later, but

for now this is what we want.

line 12

Loading the EaselJS framework into our project. Every file that we want to use in our project has

to be included this way.

line 13

Loading the app-script . Note that our app.js is still empty but we will change that in a second.

app.js

 1 var canvas, stage, image, bitmap;
 2
 3 function init () {
 4 // creating the canvas - element
 5 canvas = document. createElement ('canvas');
 6 canvas. width = 500;
 7 canvas. height = 250;
 8 document. body. appendChild (canvas);
 9
 10 // initializing the stage
 11 stage = new createjs.Stage(canvas);
 12
 13 // creating a new HTMLImage
 14 image = new Image();
 15 image.onload = onImageLoaded;
 16 image. src = 'assets/hero.png' ;
 17 }
 18
 19 // creating a Bitmap with that image
 20 // and adding the Bitmap to the stage
 21 function onImageLoaded(e) {
 22 bitmap = new createjs.Bitmap(image);
 23 stage.addChild(bitmap);
 24
 25 // set the Ticker to 30fps
 26 createjs.Ticker.setFPS(30);
 27 createjs.Ticker.addListener(tick);
 28 }
 29
 30 // update the stage every frame
 31 function tick (e) {
 32 stage.update();
 33 }
 34 window.onload = init;

line 1

All variables are declared here at once, if we declared them inside a function they would not be

accessible from outside that function or another function . But weôll learn more about this later.

lines 5 - 8

The canvas is the most important element, it is the area that everything will be rendered to,

later we will learn about how to set its width and height to the size of the viewport, but for now

weôll stick with 500:250px (or whatever size you like).

 Canvas

The canvas is a native HTML -element that can be used to draw and alternate images and

render its output to an HTML document. Drawing -methods can be accessed directly

through the context of the canvas, however EaselJS will add a layer of abstraction to the

canvas by automatically handling all drawing calls so that all you have to do is placing the

images and calling stage.update() .

line 11

The createjs.Stage is the second most important element. Everything that we want to show

on the screen has to be added to the Stag e or a child of the Stage.

 Stage

The Stage is so to say the bottom-most container. Every container or bitmap has to be

placed on the Stage (or on another container that is placed on the Stage) in order to be

rendered onto the canvas and visible to the user.

 Stage. update ()

Every time you updated the position, scale or rotation or any other parameter of an object

you have to call Stage.update() to make the changes visible on the canvas. The easiest and

most simple way to do this is to call Stage.update() at t he end of every tick (see the tick()-

method of this code part). With every Stage.update() the stage will also automatically

execute a _tick()-method on every child(if there is one).

 ht tp://www.createjs.com/Docs/EaselJS/classes/Stage.html

lines 14 Ƶ 16

Here we create a new HTMLImage, assign a method to it that is triggered onload (when the page

is done loading) and then give the Image a resource-path to load. - This means, that we have to

create a folder named assets and place an image-file named hero.png .

 HTMLImage

An HTMLImage is the representation of an image -file that is loaded by setting the

HTMLImageôs parameter src to the path of the image-file. One instance of an HTMLImage

can be used and displayed multiple times through the use of a createjs.Bitmap. So in order

to display the same image twice, no second HTMLImage has to be created and the image-

file wonôt have to be loaded twice.

http://www.createjs.com/Docs/EaselJS/classes/Stage.html
http://www.createjs.com/Docs/EaselJS/classes/Stage.html

 Game Art

In this book you will not learn about creating graphical assets for your project. If you have

no experience in creating graphics, feel free to use the assets in the Resources/-folder or

browse through OpenGameArt to find free suit able graphics for your game:

http://opengameart.org/

lines 22 Ƶ 23

Once the Image is loaded we will create a createjs.Bitmap with it and add it to the Stage

via addChild() .

 Bitmap

The Bitmap is probably one of the most commonly used classes of the EaselJS framework. It

basically wraps an HTMLImage and gives it the ability to be added to the Stage and easily

adjust certain properties like its position or its scale through the simple assign ment of

property values like myBitmap.scaleX = 2;

 http://www.createjs.com/Docs/EaselJS/classes/Bitmap.html

 addChild()

The addChild() -method is available to every Container -Object, the Stage for example is a

Container. Adding an object as a child to another object means that the added child -object

will be positioned relative to the parent -object and will be repositioned in the render tree.

An object can only be child to one parent at a time. If an object is assigned to another parent

it is automatically removed from its previous parent.

http://opengameart.org/
http://www.createjs.com/Docs/EaselJS/classes/Bitmap.html
http://www.createjs.com/Docs/EaselJS/classes/Bitmap.html

Figure 1 - addChild() example

lines 26 Ƶ 27

Setting the createjs.Ticker to 30FPS and adding the tick -method as a listener.

 Ticker

The Ticker is the global time giver of the EaselJS framework. It can be viewed as a heart-

beat of the game. Every update of an animation or a tween is based on the Ticker and its

FPS-value. The FPS-value determinates how often per second those update-calls are

executed. The Ticker will automatically execute any added listener -function or the tick -

function of any added listener -object, if adding a listener -object, make sure that the object

contains a tick() -function to execute.

 http://www.createjs.com/Docs/EaselJS/classes/Ticker.html

lines 31 ģ 33: tick()

The tick-method is called 30 times per second and executes a stage.update() every time

meaning that the stage-contents are redrawn 30 times per second.

http://www.createjs.com/Docs/EaselJS/classes/Ticker.html

line 35

The init() -function from line 3 is set as the windowôs onload-method. This means that init() will

be executed once everything is loaded.

Before you go ahead and execute the code, make sure that there is an image by the name

hero.png in the assets-folder for a reference you can also take a look at the resources of

ChapterResources/Chapter1/src/ . When we now open the index.html it should look like the

following figure.

Figure 2 - Chapter 1 Result

1.2 Debugging the Game

If youôre game should at any point not do what you expect it to do, or not run at all, you should

open the Developer - Tools and look for errors there. You can open the Developer - Tools in

Chrome by pressing F12 (or for FireFox click on the FireBug -Symbol). Now navigate to the

Console - Tab and look for any red text. Thatôs usually the part that will cause your app to fail. In

the example below you can see a message stating an error in line 15 of our app.js. The error says

i mag is not defined ï the error here was caused by a typo, instead of image I wrote imag,

and because there is no such variable defined in the game, it will fail.

Figure 3 - Chrome Developer Console

Á Setup a basic EaselJS project

Á Create a canvas and initialize the stage

Á Load an image-file and create a Bitmap from it

Á Add elements to the stage

Á Change the refresh rate of the application

If this introduction to EaselJS was too short or not detailed enough, you can take a look at this

video on getting started with EaselJS by Sebastian DeRossi from gskinner.com .

 https://youtu.be/OWHJa0jKJgo

https://youtu.be/OWHJa0jKJgo

2 Creating a Hero that moves

In this chapter we will create a class that describes our hero and it is going to be based on the

Bitmap -class that was introduced in the last chapter. (No worries, you will learn in a second

what a class is)

hero.js

 1 (function (scope) {

 2 function Hero(image) {

 3 this.initialize(image);

 4 }

 5 Hero. prototype = new createjs.Bitmap();

 6

 7 // save the original initialize - method so

 8 // it won't be gone after overwriting it

 9 Hero. prototype . Bitmap_init = Hero. prototype .initialize;

 10

 11 // initialize the object

 12 Hero. prototype . initialize = function (image) {

 13 this.Bitmap_init(image);

 14 this.snapToPixel = true ;

 15

 16 this.velocity = {x: 0,y: - 15};

 17 }

 18

 19 Hero. prototype . onTick = function () {

 20 this.velocity. y += 1;

 21 this. y += this.velocity. y;

 22 }

 23

 24 scope.Hero = Hero;

 25 } (window));

lines 1 & 25

The Hero-class is being wrapped inside an anonymous function and executed with the window

as its namespace.

 Classes in JavaScript

JavaScript does not really implement the concept of a class . This means that if we want to

create a custom class like the hero we can only do so by utilizing functions and using the

functions prototype to define properties and methods. The concept of this can be rather

complicated and for the reason that explainin g all of it would go beyond the scope of this

book I will only refer to another source if you want to know more about this topic.

 https://developer .mozilla.org/en -US/docs/JavaScript/Introduction_to_Object -Oriented_JavaScript

 http://phrogz.net/JS/classes/OOPinJS.html

line 5

The Hero is created as a sub-class of Bitmap. This means that our Hero-class is inheriting every

method, property and ability from the Bitmap -Class which is now the Super-class to the Hero-

class.

 Inheritance

Inhertitance means that the newly created class, that inherits from another class has

exactly the same capabilities as the other class PLUS all additional capabilities that we will

implement into the new class.

e.g.: Abilities like defining an x - and y-position or a rotation of the Hero are automatically

implemented.

 https://developer.mozilla.org/en -US/docs/JavaScript/Introduction_to_Object -Oriented_JavaScript#In

heritance

line 9

We reference the original initialize -method so we can still use it through the saved reference

after overwriting it.

 Overwriting the Initialize -Method

Why do we overwrite the original initialize -method? ðThe concept of EaselJS is that every

class has an initialize -method that can be called to initialize an object. And we wi ll follow

this pattern . There are several reasons, to give one example: If every class was different it

would be a lot harder to read it at a later point in case we wanted to change anything and

the same goes for when working on a project with more than on e person.

https://developer.mozilla.org/enUS/docs/JavaScript/Introduction_to_ObjectOriented_JavaScript
http://phrogz.net/JS/classes/OOPinJS.html
https://developer.mozilla.org/enUS/docs/JavaScript/Introduction_to_ObjectOriented_JavaScript#Inheritance
https://developer.mozilla.org/enUS/docs/JavaScript/Introduction_to_ObjectOriented_JavaScript#Inheritance

lines 12 - 18

This is the new initialize -method. It calls the old method and hands over the image-parameter

so the Bitmap-class can take care of the image-creation. snapToPixel is set to true and a

velocity is being initialized. Finally the initi alized object is added as a listener to the Ticker that

will execute the heroôs tick()-function every frame.

 .snapToPixel

Pixelsnapping will , as the name already says, automatically round the rendering -position

of the object to full pixels . This is usually done for performance reasons, because anti-

aliasing and subpixel -rendering can be a heavy burden to the hardware of some devices.

Note: In order for snapToPixel to work, it also has to be set to true on every parent object

and on the Stage you will have t o set the property snapToPixelEnabled to true as well.

 http://www.createjs.com/Docs/EaselJS/classes/DisplayObject.html#property_snapToPixel

 http://www.createjs.com/Docs/EaselJS/classes/Stage.ht ml#property_snapToPixelEnabled

lines 19 Ƶ 22

Defining a onTick() -method that is called every frame to update the heroôs properties.

For every DisplayObject that is added to the stage the onTick -Method is automatically

called every frame. If an object is n ot child of the stage, we would have to set a custom

listener to the createjs.Ticker.

 http://www.createjs.com/Docs/EaselJS/classes/DisplayObject.html#event_tick

lines 20 & 21

These two lines update the heroôs velocity as well as its y-position by the value of the y-velocity.

 Velocity

The velocity is initialized with a negative value, this means that it points upwards on the

stage. With every frame the velocity i s increased by one, so within 16 frames it will be

positive and pointing downwards.

Updating the position of the hero by its current velocity will so result in a very simple but

still good looking form of jumping up and falling down as illustrated by the f igure below

(the figure is an example, positions are not exact).

http://www.createjs.com/Docs/EaselJS/classes/DisplayObject.html#property_snapToPixel
http://www.createjs.com/Docs/EaselJS/classes/DisplayObject.html#property_snapToPixel
http://www.createjs.com/Docs/EaselJS/classes/Stage.html#property_snapToPixelEnabled
http://www.createjs.com/Docs/EaselJS/classes/DisplayObject.html#event_tick

Figure 4 - Illustrating Velocity

line 24

The Hero-class is handed over to the namespace which is in this case the window. We can now

create a Hero-object from anywhere within the application by executing new

Hero(imageForTheHero) .

 Namespacing

Namespacing is used when multiple frameworks are used together and you want to prevent

classes from interfering with another class from another framework that has coincidentally

the same name. The EaselJS-framework for example is using the namespace createjs . The

namespace we chose, window, does not have to be typed in the code as everything in

JavaScript is a property of window, so window equals a global or no namespace.

 Custom Namespacing

If you choose to use a custom namespace, you simply have to hand over your namespace

instead of window in line 27 . However you have to make sure that the namespace exists by

defining it once before a class is loaded, for example you could add this before line 1 :

this.mynamespace = this.myNameSpace || {};

and in line 25 :

 } (this.mynamespace));

But remember: Whenever you want to create a new object from one of your classes, you

have to go through the namespace:

 var myObject = new mynamespace.MyClass();

 http://www.codeproject.com/Articles/19030/Namespaces -in-JavaScript

http://www.codeproject.com/Articles/19030/Namespaces-in-JavaScript

So now that we have our Hero-Class, how do we create and add a Hero to the stage? ð Just like

we created a Bitmap in the last chapter, we now replace all Bitmap-reference with our Hero -

Class:

app.js line 1

Instead of naming the variable bitmap , we will give it the name hero .

The name of the variable does not HAVE to be hero, you can chose whatever name you like,

however you will have to remember it in order to use it later .

app.js lines 22 - 24

The second step is replacing the instantiation of the Bitmap with the instantiation of the Hero

and giving the Hero a position:

 22 hero = new Hero(image);
 23 hero. x = hero. y = 150;
 24 stage.addChild(hero);

Now one more change in the index.html and we are good to go: We have to tell the index-file

that it needs to load the hero.js otherwise no hero could be created if there is no class by that

name, so we add the following code one line above the loading of app.js

index.html line 12

 12 <script src ="js/ hero .js" ></ script >

If you open the index.html you should now see a jumping hero, you can press F5 to reload the

page and see it jump again.

Á Creating a custom class (hero.js)

o utilizing the initialize -method

o implementing a custom tick() -function and assigning it to the createjs.Ticker

Á Working with velocities and motion by updating the position of an object every frame

Á Implementing the new class to the app, creating an instance from it and adding it to the

stage

7 Implementing a collision detection

In case you did not read the previous chapter: There is a file in the resources-folder:

óndgmr.collision.js ô, this is a utility class that will take of the collision detection for you, all we

have to do is add a couple of lines to our hero.js in order to have the game checking for a

collision and taking certain actions if needed.

7.1 The Code

index.html

So first we need to place the ndgmr.Collision.js in our projectôs js-folder and load it in the

index.html just like the other JavaScript files.

hero.js

There are many ways to decide what objects we want to include in the collision check, in this

case we take all children of the heroôs parent-container. This is usually not a good idea when that

parent-container is a stage, but in this case itôs okay since there are only two objects on the stage.

Later when we are going to add some eye-candy we will have to create an own container for

everything to get no confusion with the collisions. So in order to detect the collision and take

action we add this to the onTick() -method:

 22 var c, col, collObjs =this. parent .children, dir;
 23 for (c = 0; c < collObjs. length ; c++) {
 24 if (collObjs[c] == this) continue ;
 25 col = ndgmr.checkRectCollision(this,collObjs [c]);
 26 if (col) {
 27 dir = this.velocity. y < 0 ? 1 : - 1;
 28 this. y += col. height * dir;
 29 this.velocity. y = 0;
 30 //not always save to "break" but here it is ; -)
 31 break ;
 32 }
 33 }

lines 23 & 24

Initializing the variables and retrieving and parsing through all children of the heroôs parent

container.

line 25

If the current child is the hero itself, we continue with the next child, because we donôt want the

hero to check for a collision with itself.

line 26

Using the ndgmr.Collision -class for collision detection, returns null if no collision occurred or

returns the size of the intersection in case of a collision.

line 27

Depending on whether the hero is jumping up, bumping his head on the bottom of a platform,

or flying down, landing on a platform, we have to determine the direction of travel to adjust the

position in the opposite of that direction.

lines 28 Ƶ 29

If a collision occurred, we reposition the hero by the size of the intersection and set the vertical

velocity to 0, the hero landed on an obstacle and the ócorrectô physical response is to stop.

line 31

Just in case a collision occurred we break the loop, we donôt need to check for additional

collisions. In other scenarios you might need to check of every collision, so donôt do it always like

this.

After implementing the loop into the heroôs tick()-method the hero should now not pass through

the platform any more. Congratulations, with just a few lines or code you now added a collision -

detection and with that a little bit more realism to your game.

7.2 Possible Issues

With this way of checking for a collision there is one possible issue that might occur is some very

rare cases. Imagine the hero moving so fast that in one frame it is above a platform and in the

next frame it is below a platform and therefore it should have collided but no collision is

detected. However we will look past this issue for now, the following figure should emphasize

how very unlikely this w ill happen.

Figure 5 ï The hero passing through a platform

Another possible issue, that can occur, is that the hero can be surrounded by another object or to

surround another object, so that after we adjust the position of the hero, the collision still

occurs. This can be caused if the velocity of the hero is greater than the size of the colliding

object (so either with a very high velocity or a very small obstacle). This issue can be resolved by

simply rechecking for a collision after the heroôs position was adjusted and repeat the process if

there was still a collision detected.

Figure 6 - The hero being stuck

